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Introduction

The work accomplished in this SBIR project demonstrated that the addition of boron
nitride (BN) powder to a composite laminate significantly increases the through-the-
thickness thermal conductivity (Kz) of a composite laminate. The importance of this
work is that the improved Kz results in significantly lower operating temperatures for
thermal applications such as composite thermal planes for advanced electronic
applications and space based radiators. The advantage of this material compared to
competing materials is that it can be used to fabricate high strength, high thermal
conductivity, relatively thin structures less than 0.050-inch thick.

Typical graphite fiber reinforced composite thermal planes have an in-plane thermal
conductivity (Kx and Ky) in the range 300-650 w/m/K, based on the fiber selection.
But, the relatively low Kz of a typical composite laminate significantly reduces the
efficiency of the thermal plane due to the high impedance to getting heat in or out of
the laminate. Finite element analysis of typical composite thermal planes shows that
by increasing the Kz from about 1 w/m/K for a typical laminate to about 4 w/m/K, as
achieved in this project, results in temperature reductions in the order of 30%.

This project’ was carried out using Amoco (now BP Amoco) K-800X fiber,
prepregged using Hexcel 954-3 resin. Since the resin, rather than the fiber, dominate
Kz, the improvement in Kz is expected to be applicable to any carbon fiber laminate.

A number of companies have expressed interest in the work carried out during this
project and XCA is working with them to commercialize the technology.

Figure 1. Photograph of typical composite thermal core and
covers fabricated by XC Associates
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Thermal results

Summary

The addition of boron nitride powder, BN, to a composite laminate increased the
through-the-thickness thermal conductivity, Kz. However, the addition of the BN also
reduced the fiber volume fraction. Hence, there was a decline in the in-plane thermal
conductivity, Kx and Ky. Finite element analysis shows the net result was an
improvement in overall thermal performance as discussed in paragraph 2.8.

Samples were cured using both a press cure without bleeding resin during the cure
and an autoclave cure with significant resin bleed from the laminate during cure. The
results showed that the Kz of the autoclave cure laminates was significantly higher
than for the press cure. The reason for this requires further work, but a preliminary
explanation is that the autoclave laminate has a higher fiber volume and the BN
powder was more evenly distributed within the laminate.

Thermal conductivity Kz, press cured laminate, no resin bleed.

Kz vs BN loading (press cure)
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Figure 2. Kz for a press cured laminate




NSWCCD-TR-2000/003+CR -

23 Thermal conductivity Kz, autoclave cure laminate, with resin bled.

Kz vs % BN Loading (autoclave cure)
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Figure 3. Kz for autoclave cured laminate

24 Graph comparing Kz for press and autoclave cured laminates
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Figure 4. Kz for press and autoclave cured laminates
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Description of graph

Laminate samples were cured using press cure during which there was very little
resin bled from the laminate. During the autoclave cure cycle resin was bled from the

laminate.

The fiber faction for the unfilled laminate was calculated from the prepreg data as
presented in Table 3. ‘

The fiber fraction of the filled laminates was calculated from the ratio-cured thickness
of the filled laminate to the unfilled laminate after cure.

The laser flash method was used to measure the diffusivity, specific heat and density
of the samples. The thermal conductivity K was calculated as Equation 1.

K=0O.. P.Cp Equation 1

Where O = Thermal diffusivity

P = Density of laminate, 1.8 gr/cem’ @25°C
Cp = specific heat of laminate, 0.85 J/gr. Deg @ 25°C

Verification of diffusivity and fiber fraction

The graph in Figure 5 shows the measured in-plane thermal conductivity, Kx, plotted
against the theoretical value calculated from Equation 2. The good agreement gives
high confidence to the laser flash method and the calculated V{.

Kx & Vf vs % BN Loading (press cure no resin bleed)
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Figure 5. Kx and Vfvs % BN loading
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Figure 5 also shows the variation of the measured Kx against the calculated fiber
volume for the press-cured samples. (The laminate was a 0°/90° laminate so Kx=Ky).
The fiber thermal conductivity of about 750 w/m/K was derived from data provided
by Amoco.

Discussion of results

The laminates were fabricated by adding a predetermined weight of BN powder to
each layer of the prepreg during the lay-up process. Since material was being added
to the prepreg the volume increased and hence the fiber volume, Vf, decreased as
more BN was added. This is important since in-plane thermal conductivity Kx and Ky
is determined by the relationship

KL =KeVet+t KnVm 2 Ke Ve Equation 2

The thermal conductivity of the laminate is dominated by the fiber since Ki>>Ky,
If the fibers are not orientated along the heat flow direction, the Equation is modified
as

Kx = Ky.sin?p Ky =Ky.cos’p Equation 3

Where ¢ = angle of fibers of particular ply
K¢= Longitudinal thermal conductivity of fiber
K= Thermal conductivity of matrix
V¢ = Fiber volume
Vo = matrix fiber volume

From Equations 2 and 3 it can be seen that the thermal conductivities, Kx and Ky are
controlled by the fiber conductivity since this much greater than the resin
conductivity.

There was considerable scatter in the results of Kz obtained from different autoclave
cured samples. The reason is that the resin bleed varied among the samples indicating
this is an important variable. More work needs to be carried out in this area.

Since the resin dominates Kz, it is expected that the improvement in Kz presented
above will also be applicable to laminates fabricated from other fibers.

A preliminary investigation based on two samples showed that larger particle sizes
resulted in less improvement in Kz. The effect of smaller particle sizes needs to be
more completely investigated.
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2.8 Practical importance of the results

Using the measured Kz results from Figure 3, and calculating the corresponding Kx
and Ky (from Equations 2 and 3), the temperature of a typical SEM-E thermal plane
was calculated. The results showed that the addition of 8%-10% BN to a laminate
results in a 30% temperature reduction. This analysis assumed a typical SEM-E
heatsink loaded with 65 watts of heat applied uniformly across the center of the
heatsink while the rails were maintained at temperature To. A graph of the
temperature difference AT is presented in Figure 6.

Delta T, Thermal plane

14

12

10

Delta T (deg C)

0 T T T T T T T
0 2 4 6 8 10 12 14 16

% Loading BN

Figure 6. Improved performance of thermal core
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Mechanical results

Summary of mechanical properties

Table 1. Comparison of mechanical properties .

‘Property | . AlB

Density

Ib/in’

Thermal Kx=210 Kx =187 Kx =220
conductivity Ky =210 Ky =187 Ky =220
w/m/K Kz=210 Kz=187 Kz=4

Modulus of E=28 E =10 Ex =22
Elasticity Ey =22
Msi Gn/a G= 38 G =4.7
Tensile Strength Sx = Sy =28 Sx =Sy =37 Fx=42
ksi Ky =42

The results presented in Table 1 are for a 0/90 laminate fabricated from K-800X/954-
3 laminate filled with 8% BN.

Varying the fiber type and orientation, as shown in Equations 2 and 3 can optimize
the values for thermal conductivities Kx and Ky. Typical values for Kx of 290- 530
w/m/K may be achieved using K13C2U, K-800X, or K-1100 respectively.

Stiffness and strength of the laminate are also determined by the fiber orientation.

The results of mechanical testing carried out on the press cure laminates are presented
on the following pages. ’
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Tensile modulus

Tensile Modulus vs. %BN Loading
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Figure 7. Tensile modulus
Tensile strength
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Figure 8. Tensile strength
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| 3.4 Compression strength

Compression Strength vs %BN loading
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Figure 9. Compression strength
35 Shear strength
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Figure 10. Shear strength
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Discussion of mechanical results

The mechanical results indicate that the addition of BN powder reduces the laminate
strength. This is expected since the addition of BN reduced the fiber volume
percentage of the laminate. The measured strength of the laminate presented in Table
1 compares the strength of the laminate loaded with 8% BN compared to typical
metals. Using the method of fabrication described in paragraph 5, Fabrication
method, it is straightforward to only add BN to the areas with high thermal inputs and
hence, achieve the highest structural strength.

We expect the mechanical strength to be related to the BN and resin volume
percentages, therefore we would expect some variation between press and autoclave
cure. This will be investigated in future work.

The tensile modulus increases with the addition of BN powder (see Figure 7. Tensile
modulus). This result is contrary to our expectation but may be explained by the fact
that the mixture of BN and resin has a higher stiffness than resin alone.

Mechanical test samplés

The following tests were used to characterize the laminate; mechanical tests were
only carried out on the press-cured samples.

Table 2. Material test samples

Test ASTM Comment

Tension ASTM D 3039 | 5 test coupons from each sample
Short beam shear | ASTM D 2344 | 5 test coupons from each sample
Compression ASTM D 3410 | 5 test coupons from each sample

The test samples were cut from a 12-inch x 12-inch x 0.1-inch thick laminate as

shown in Figure 11.
Compression
/ ASTM 3410

Tension — rl

ASTM 3039 Thermal

samples

]
|
]
[H]gg ——
B

|—  Shear
ASTM 2344

F
(

|

[

=
-
—
I
—]
=]

Figure 11. Layout of samples on 12-inch square test panel
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Microscopic

The microscopic analysis of the samples is an on-going final year project being
carried out at Union College, The objective of the work is to determine the
distribution of the BN powder within the laminate. Data from these micrographs will
be used in further work to develop a theoretical model of heat flow through the
laminate. '

The results presented here are for the press cured laminates; micrographs of the
autoclave samples will be presented in a later report.

Samples were polished, then examined under a microscope to determine the location
of the fibers, location of the BN, and the void content. The photographs of the micro
sections are presented below.

oS A NS

End view
of fiber

Fibers
running
left to right

Apparent
voids

.“.A.::\J braja=

Joo

2% BN I

W iopas7

Figure 13. Sample showing 8% BN fill
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BN powder

Figure 15. Sample showing 16% BN fill, viewed with polarized light

Discussion of results

The reason we have referred to apparent voids in Figure 12 is due to difficulty
encountered while polishing the samples caused by the variation in hardness and
brittleness of the matrix, carbon fiber and BN. We believe that the voids are a
material property rather than being caused by the polishing due to their random
distribution. If polishing caused them we would have expected a more regular
signature.

The next stage of the micrograph project will be to polish the autoclave cure samples
and compare the results with the press cured samples. The polishing technique will

12
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also be further refined. If the void content is higher in the press cure samples than the
autoclave samples this may explain the difference in the measured Kz.

* Each of the micro-sections indicated that the BN powder remained in a layer between

the plies of material and did not flow in between the fibers. This is most clearly seen
when the samples were viewed under polarized light as presented in Figure 15. The
variation in thickness of the BN layer is attributed to uneven distribution of the
powder during lay-up, uneven flow of the powder during cure or a combination of the
two.

Materials
Table 3. Materials used in program
Material Supplier Specification
Fiber Amoco K-800 X
Prepreg Hexcel K-800X 2K/954

R/C: 33% ( by weight)
FAW: 8365 G/M?
Fiber Volume 61%
Boron Nitride | Advanced Ceramics | Polar Therm 620

Material selection

The choice of K-800X fiber was based on availability and cost rather than any
technical reason. Since Kz is mainly dependent on the matrix it is believed that the
results presented will also apply to laminates fabricated from other fibers.

Hexcel 954-3 was chosen since it is a space qualified resin and one of the applications
of this technology is to fabricate thermal management components for spacecraft.

Boron Nitride was selected as the loading material to enhance Kz for the following

reasons

e Itisinert and will not cause corrosion

e Compatibility of coefficient of thermal expansion

e Commercial availability

e A literature survey indicated BN powder significantly improved the thermal
conductivity of compression molding compounds.

e Density and structure of BN is similar to carbon.

13
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Fabrication method

The laminates were fabricated by simply adding a predetermined weight of BN
powder to plies of prepreg during a normal lay-up process. The laminates were then
cured using the Hexcel recommended cure cycle for either press or autoclave.

Selection of fabrication method

The most important reasons for selecting this method of fabrication in preference to

mixing the BN with the resin prior to prepregging is because:

e Itis possible to load only specific areas of laminate subject to high thermal inputs.
(This is particularly important for high performance, structural applications.), and

e Itis very simple to carry out, particularly in small batch fabrication, and is lower
cost than having the “prepregger” blend the powder during prepreg operation.

Details of fabrication method
Table 4. weight of BN added to laminate

% of BN Weight
added to laminate grams/inz
0% 0.00000
2% : 0.00258
4% 0.00516
6% 0.00774
8% 0.01032
10% 0.01290
12% 0.01548
14% 0.01806
16% 0.02064

The area of each ply was calculated and the weight of BN to be added was simply
calculated by multiplying the area by the weight given in Table 4. v

A detailed description of the fabrication process is presented in US patent 5,962,348,
“Method of making thermal core material and material so made”, authors J ohn Bootle

and Frank Burzesi and assigned to XC Associates.

14
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Future Work

Identify programs
XCA have identified a number of programs that are interested in enhanced thermal
conductivity, composite laminates. We are working with several companies to
identify programs that have particular requirements that will lead to
commercialization.

Computer Model

Develop a computer model of laminates to predict the thermal and mechanical
behavior. This will be a very useful tool to use as a method to analysis candidate
laminates to determine the critical factors influencing thermal conductivity. Prior
work by XCA and others has demonstrated the Kz is influenced by a large number of
variables. It would be impractical to build physical laminates and test each candidate
and the use of a computer code would greatly assist with optimization.

Preliminary work indicates that the computer code would be written as a module for
use with an established finite element code such as COSMOS/M

Plating

XCA have identified plating as a significant issue for composite components. In prior
work, XCA has successfully plated composite thermal cores using NiCad/Chromate
with excellent adhesion that resisted 500-hour salt spray testing. However, this testing
required considerable surface preparation that resulted in a 64 surface finish. XCA
believes that it is possible to modify the surface treatment using a corona discharge
that will result in a surface better than 32.

Production method

Once programs have been identified it will be important to develop an automated
method of production that will spread the required weight of BN powder in the
correct areas of the laminate.

Commercialization

Commercial applications

XCA plans to market the BN filled composite laminates under the name of CHS-600,
CHS-800 and CHS-1100 where CHS stands for Composite HeatSinks and the
number refers to the nominal value of the fiber thermal conductivity.

The use of high thermal conductivity, composite laminates has commercial
applications where higher thermal conductivity and reduced weight are required.

15
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7.1.3 This program has demonstrated that the addition of BN powder to a carbon fiber
laminate increases the Kz. The graph shown in Figure 6 shows that a filled composite
core is more efficient than an unfilled composite thermal core and will run at a lower
temperature which is a major benefit for electronic applications. XCA is working
with a number of prime contractors to provide material samples for evaluation for use
in future programs. v

7.14 As part of this SBIR program XCA has fabricated material samples for evaluation by
Lockheed Martin, Raytheon and Johns Hopkins University Applied Physics
Laboratory.

7.1.5 A survey indicates that the technology developed in this SBIR has specific
advantages over other materials used for thermal applications. Table 5 presents a
comparison of BN filled carbon fiber composite materials with typical materials used
for thermal applications.

Table 5. Comparison of material properties
Material Advantage of BN filled composite Comment
Aluminum e Higher thermal conductivity than aluminum | Aluminum is usually the baseline
e Thin cross-section, typically 0.060” or less material of choice based on cost, but
e Lighter weight than aluminum when high thermal performance or
e  Higher stiffness and strength than reduced weight is required
aluminum : composite offers definite
e Low coefficient of thermal expansion advantages.
Exotic Metals e  Similar performance These metals have advantages
AlBe, Be.Be e Lower cost by molding to finished shape compared to composite for
oxide, AlSi e No health hazards associated with applications requiring complex
machining shapes that cannot be molded.
Unfilled carbon e Addition of BN increases the Kz without
fiber composite increasing the cost
TC1050 e Greater thermal conductivity for The mechanical properties of
components less than 0.10” thick TC1050 are determined by the skin
Higher performance for thin cores material, which means that the
Higher stiffness material becomes inefficient for thin
components.
7.2 Phase 11

XCA is developing a Phase II proposal with the support of a number of commercial
companies who are interested in using this technology for new thermal products.
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ATTN MARY LEE GAMBONE
BENJI MARUYAMA

WL/MLLM BUILDING 655

2230 TENTH STREET STE1

1
1

WRIGHT PATTERSON AFB OH 45433-7817

ATTN W GAMMIL (PLAVSVD)
ROBERT ACREE (PL/VSVD)
AIR FORCE RESEARCH LABORATORY
3550 ABERDEEN AVENUE SE
KIRTLAND AFB NM 87117-5776

ATTN LEE RAY

US ARMY SPACE AND MISSILE
DEFENSE COMMAND

MDSTC/SMDC-TC-AC

P O BOX 1500

HUNTSVILLE AL 35807-3801

ATTN DONALD WOODBURY
(AMSRL-WT-L)
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